

Welcome to apiwrappers

apiwrappers is a library for building API clients
that work both with regular and async code.

Features

	DRY - support both regular and async code with one implementation

	Flexible - middleware mechanism to customize request/response

	Typed - library is fully typed and it’s relatively easy
to get fully typed wrappers

	Modern - decode JSON with no effort using dataclasses and type annotations

	Unified interface - work with different python HTTP client libraries
in the same way. Currently supported:

	requests [https://requests.readthedocs.io/en/master/]

	aiohttp [https://docs.aiohttp.org/en/stable/client.html]

Installation

pip install 'apiwrappers[aiohttp,requests]'

Note: extras are mainly needed for the final user of your API client

Getting Started

With apiwrappers you can bootstrap clients for different API
pretty fast and easily.

Here is how a typical API client would look like:

from __future__ import annotations

 from dataclasses import dataclass
 from typing import Awaitable, Generic, List, TypeVar, overload

 from apiwrappers import AsyncDriver, Driver, Request, Url, fetch

 T = TypeVar("T", Driver, AsyncDriver)

 @dataclass
 class Repo:
 id: int
 name: str

 class Github(Generic[T]):
 def __init__(self, host: str, driver: T):
 self.url = Url(host)
 self.driver: T = driver

 @overload
 def get_repos(
 self: Github[Driver], username: str
) -> List[Repo]:
 ...

 @overload
 def get_repos(
 self: Github[AsyncDriver], username: str
) -> Awaitable[List[Repo]]:
 ...

 def get_repos(self, username: str):
 url = self.url("/users/{username}/repos", username=username)
 request = Request("GET", url)
 return fetch(self.driver, request, model=List[Repo])

This is small, but fully typed, API client for one of the
api.github.com [https://api.github.com] endpoints to get all user repos
by username:

Here we defined Repo dataclass that describes what we want
to get from response and pass it to the fetch()
function. fetch() will then make a request and
cast response to that type.

And here how we can use it:

>>> from apiwrappers import make_driver
>>> driver = make_driver("requests")
>>> github = Github("https://api.github.com", driver=driver)
>>> github.get_repos("unmade")
[Repo(id=47463599, name='am-date-picker'),
 Repo(id=231653904, name='apiwrappers'),
 Repo(id=144204778, name='conway'),
 ...
]

To use it with asyncio all we need to do is provide a proper driver
and don’t forget to await method call:

Use IPython or Python 3.8+ with python -m asyncio
to try this code interactively

>>> from apiwrappers import make_driver
>>> driver = make_driver("aiohttp")
>>> github = Github("https://api.github.com", driver=driver)
>>> await github.get_repos("unmade")
[Repo(id=47463599, name='am-date-picker'),
 Repo(id=231653904, name='apiwrappers'),
 Repo(id=144204778, name='conway'),
 ...
]

Table of Contents

	Building an API Client
	Making a Request

	Writing a Simple API Client

	Using the API Client

	Drivers
	Basic Usage

	Driver protocols

	Timeouts

	SSL Verification

	Writing your own driver

	Authentication
	Basic Authentication

	Token Authentication

	Api key Authentication

	Custom Authentication

	Middleware
	Writing your own middleware

	Using middleware

	Middleware order

	Experimental Features

	API Reference
	Driver Protocols

	Request and Response

	Exceptions

Building an API Client

This page will walk you through steps on how to build wrapper for API.

Making a Request

Each wrapper needs a HTTP client to make requests to the API.

You can easily use one of the drivers to make requests, but
Driver.fetch() call returns a
Response object, which is not always
suitable for building good API clients.

For API client it can be better to return typed data,
such as dataclasses, than let the final user deal with json.

apiwrappers provides a fetch() function,
which takes driver as a first argument, and all other
arguments are the same as with
Driver.fetch().
Giving that, it behaves exactly like if you are working with driver:

>>> from apiwrappers import Request, fetch, make_driver
>>> driver = make_driver("requests")
>>> request = Request("GET", "https://example.org")
>>> response = fetch(driver, request)
<Response [200]>

You can also provide two additional arguments:

	model - a type or factory function that describes response structure.

	source - optional key name in the json, which value will be passed
to the model. You may use dotted notation to traverse keys - key1.key2

With these arguments, fetch() function acts like
a factory, returning new instance of the type provided to the model argument:

from dataclasses import dataclass
from typing import List

from apiwrappers import Request, fetch, make_driver

@dataclass
class Repo:
 name: str

url = "https://api.github.com/users/unmade/repos"
request = Request("GET", url)

driver = make_driver("requests")
fetch(driver, request, model=List[Repo]) # [Repo(name='am-date-picker'), ...]
fetch(driver, request, model=Repo, source="0") # Repo(name='am-date-picker')
fetch(driver, request, model=str, source="0.name") # 'am-date-picker'

driver = make_driver("aiohttp")
await fetch(driver, request, model=List[Repo]) # [Repo(name='am-date-picker'), ...]
await fetch(driver, request, model=Repo, source="0") # Repo(name='am-date-picker')
await fetch(driver, request, model=str, source="0.name") # 'am-date-picker'

Writing a Simple API Client

Now that we know how to make requests and how to get data from response,
lets write API client class:

from dataclasses import dataclass
from typing import List

from apiwrappers import Request, Url, fetch

@dataclass
class Repo:
 id: int
 name: str

class GitHub:
 def __init__(self, host, driver):
 self.url = Url(host)
 self.driver = driver

 def get_repos(self, username):
 url = self.url("/users/{username}/repos", username=username)
 request = Request("GET", url)
 return fetch(self.driver, request, model=List[Repo])

Here we defined .get_repos method to get all user’s repos.
Based on the driver this method returns either a List[Repo]
or a coroutine - Awaitable[List[Repo]]

You never want to await the fetch call here,
just return it immediately and let the final user await it if needed

Another thing to notice is how we create URL:

url = self.url("/users/{username}/repos", username=username)

Sometimes, it’s useful to have an URL template, for example, for logging
or for aggregating metrics, so instead of formatting immediately, we
provide a template and replacement fields.

The wrapper above is good enough to satisfy most cases,
however it lacks one of the important features nowadays - type annotations.

Adding Type Annotations

In the example above, we didn’t add any type annotations for
.get_repos method.

We can simply specify return type as:

Union[List[Repo], Awaitable[List[Repo]]

and that will be enough to have a good auto-completion,
but what we want precise type annotations.

We want to tell mypy, that when driver corresponds to
Driver protocol
.get_repos has return type List[Repo]
and for AsyncDriver protocol -
Awaitable[List[Repo]].

It can be done like that:

from __future__ import annotations

from dataclasses import dataclass
from typing import Awaitable, Generic, List, TypeVar, overload

from apiwrappers import AsyncDriver, Driver, Request, Url, fetch

T = TypeVar("T", Driver, AsyncDriver)

@dataclass
class Repo:
 id: int
 name: str

class GitHub(Generic[T]):
 def __init__(self, host: str, driver: T):
 self.url = Url(host)
 self.driver: T = driver

 @overload
 def get_repos(
 self: GitHub[Driver], username: str
) -> List[Repo]:
 ...

 @overload
 def get_repos(
 self: GitHub[AsyncDriver], username: str
) -> Awaitable[List[Repo]]:
 ...

 def get_repos(self, username: str):
 url = self.url("/users/{username}/repos", username=username)
 request = Request("GET", url)
 return fetch(self.driver, request, model=List[Repo])

Here, we defined a T type variable, constrained to
Driver
and AsyncDriver protocols.
Our wrapper is now a generic class of that variable.
We also used overload [https://docs.python.org/3/library/typing.html#typing.overload] with self-type to define return type based on
the driver provided to our wrapper.

Using the API Client

Here is how we can use our client:

>>> from apiwrappers import make_driver
>>> driver = make_driver("requests")
>>> github = GitHub("https://api.github.com", driver=driver)
>>> github.get_repos("unmade")
[Repo(id=47463599, name='am-date-picker'),
 ...
]

Or to use it asynchronously:

>>> from apiwrappers import make_driver
>>> driver = make_driver("aiohttp")
>>> github = GitHub("https://api.github.com", driver=driver)
>>> await github.get_repos("unmade")
[Repo(id=47463599, name='am-date-picker'),
 ...
]

Drivers

Drivers are essentially adapters for different python HTTP client libraries.

This page will walk you through the concept of drivers
in the apiwrappers library.

Basic Usage

Out of the box apiwrappers provides drivers for
requests [https://requests.readthedocs.io/en/master/] and
aiohttp [https://docs.aiohttp.org/en/stable/client.html]
libraries.

You can create them with a make_driver()
factory. Let’s learn how to make a simple request using a driver
for requests [https://requests.readthedocs.io/en/master/] library:

>>> from apiwrappers import Request, make_driver
>>> driver = make_driver("requests")
>>> request = Request("GET", "https://example.org")
>>> response = driver.fetch(request)
>>> response
<Response [200]>
>>> response.status_code
200
>>> response.headers["content-type"]
'text/html; charset=UTF-8'
>>> response.text()
'<!doctype html>\n<html>\n<head>\n<title>Example Domain...'

Or using driver for aiohttp [https://docs.aiohttp.org/en/stable/client.html]:

Use IPython or Python 3.8+ with python -m asyncio
to try this code interactively

>>> from apiwrappers import Request, make_driver
>>> driver = make_driver("aiohttp")
>>> request = Request("GET", "https://example.org")
>>> response = await driver.fetch(request)
>>> response
<Response [200]>

As you see, some drivers can be used regularly, while others - asynchronously.
It is also better to think of what structural protocol particular driver
follows, rather than what library it uses underneath.

Driver protocols

All drivers should follow either Driver
or AsyncDriver protocols, depending on
which HTTP client is used.Protocols also help to abstract away from concrete
driver implementations and ease type checking and annotation.

Timeouts

You can set timeouts in seconds when creating a driver or
when making a request. The later will take precedences over driver settings.

By default timeout is 30 seconds.

Here is how you can change it:

from datetime import timedelta

from apiwrappers import make_driver

driver = make_driver("requests", timeout=5)

making a request with timeout set to 5 seconds
driver.fetch(request)

making a request with timeout set to 2.5 seconds
driver.fetch(request, timeout=2.5)

or more explicitly
driver.fetch(request, timeout=timedelta(minutes=1))

timeout is disabled, wait infinitely
driver.fetch(request, timeout=None)

In case timeout value is exceeded Timeout error will be raised

SSL Verification

You can enable/disable SSL verification or provide custom SSL certs
upon driver instantiation. Default CA bundle provided by
certifi [https://github.com/certifi/python-certifi] library.

By default SSL verification is enabled.

Here is how you can change it:

from apiwrappers import make_driver

disable SSL verification
driver = make_driver("requests", verify=False)

custom SSL with trusted CAs
driver = make_driver("requests", verify="/path/to/ca-bundle.crt")

custom Client Side Certificates
certs = ('/path/to/client.cert', '/path/to/client.key')
driver = make_driver("requests", cert=certs)

Writing your own driver

To write a driver you don’t need to subclass anything
and have a lot of freedom. You can write however you want,
the key thing is to follow one of the protocols.

Authentication

This page describes how you can use various kinds of authentication with
apiwrappers.

Basic Authentication

Making request with HTTP Basic Auth is rather straightforward:

from apiwrappers import Request

Request(..., auth=("user", "pass"))

Token Authentication

To make a request with a Token Based Authentication:

from apiwrappers import Request
from apiwrappers.auth import TokenAuth

Request(..., auth=TokenAuth("your_token", kind="JWT"))

Api key Authentication

To make a request with a Api key Based Authentication:

from apiwrappers import Request
from apiwrappers.auth import ApiKeyAuth

Request(..., auth=ApiKeyAuth("your_key", header="X-Api-Key"))

Custom Authentication

You can add your own authentication mechanism relatively easy.

If you don’t need to make any external calls, then you can define a callable
that returns a dictionary with authorization headers.

For example, this is simple authentication class:

from typing import Dict

class ProxyAuth:
 def __call__(self) -> Dict[str, str]:
 return {"Proxy-Authorization": "<type> <credentials>"}

Authentication Flows

Sometimes we need to make additional calls to get credentials.

apiwrappers allows you to do just that:

from typing import Generator, Dict

from apiwrappers import Request, Response

class CustomAuthFlow:
 def __call__(self) -> Generator[Request, Response, Dict[str, str]]:
 # you can issue as many request as you needed
 # this is how you issue a request
 response = yield Request(...)

 # response is available immediately for processing
 return {"Authorization": response.json()["token"]}

Note, that a function now is generator function and you can yield as many
request as you needed, but you should always return a dictionary with
authentication headers.

Middleware

Middleware is a light “plugin” system for altering driver’s
request/response/exception processing.

This page will walk you through the concept of middleware
in the apiwrappers library.

Writing your own middleware

A middleware factory is a callable that takes a callable and returns
a middleware. A middleware is a callable that takes same argument as
Driver.fetch() and returns a response.

The most simple way is to write a middleware as function:

from apiwrappers.structures import NoValue

def simple_middleware(handler):

 def middleware(request, timeout=NoValue()):
 # Code to be executed before request is made
 response = handler(request, timeout)
 # Code to be executed after request is made
 return response

 return middleware

Since middleware is used by drivers, and the one we’ve written can be used
only by regular driver, we also need to provide an async implementation:

from apiwrappers.structures import NoValue

def simple_async_middleware(handler):

 async def middleware(request, timeout=NoValue()):
 # Code to be executed before request is made
 response = await handler(request, timeout)
 # Code to be executed after request is made
 return response

 return middleware

As you can see, the only difference is that in async middleware we have to
await the handler call.

To help us reduce this code duplication apiwrappers provides a
BaseMiddleware class. Subclassing one you can then
override it hook methods like that:

from typing import NoReturn

from apiwrappers import Request, Response
from apiwrappers.middleware import BaseMiddleware

class SimpleMiddleware(BaseMiddleware):
 def process_request(self, request: Request) -> Request:
 # Code to be executed before request is made
 return request

 def process_response(self, response: Response) -> Response:
 # Code to be executed after request is made
 return response

 def process_exception(
 self, request: Request, exception: Exception
) -> NoReturn:
 # Code to be executed when any exception is raised
 raise exception

Using middleware

Middleware are used by drivers and each driver accepts a list of middleware.

Although, middleware we defined earlier literally does nothing,
it still can be used like that:

>>> from apiwrappers import make_driver
>>> driver = make_driver("requests", SimpleMiddleware)
>>> driver
RequestsDriver(Authorization, SimpleMiddleware, ...

Note, that even we provide only ``SimpleMiddleware`` the driver also has
``Authorization`` middleware. That’s because some drivers have middleware
that should always be present.

You can also change driver middleware after creation by simply reassigning
Driver.middleware attribute:

>>> driver.middleware = []
>>> driver
RequestsDriver(Authorization, ...

The order of the default middleware can be overridden by explicitly
specifying it:

>>> driver.middleware = [SimpleMiddleware, Authorization]
>>> driver
RequestsDriver(SimpleMiddleware, Authorization, ...

Middleware order

The order of middleware matters because a middleware can depend on other
middleware.

Before making actual request, middleware are executed in the order
they are defined.
After getting the response middleware are executed in the reverse order.

Experimental Features

As experiment, there is also a Fetch descriptor, that
helps reduce boilerplate and lets you write wrappers
in almost declarative way:

from __future__ import annotations

from dataclasses import dataclass
from typing import Any, Generic, List, Mapping, TypeVar

from apiwrappers import AsyncDriver, Driver, Request, Url
from apiwrappers.xfeatures import Fetch

T = TypeVar("T", Driver, AsyncDriver)

@dataclass
class Repo:
 id: int
 name: str

class Github(Generic[T]):
 get_repos = Fetch(List[Repo])

 def __init__(self, host: str, driver: T):
 self.url = Url(host)
 self.driver: T = driver

 @get_repos.request
 def get_repos_request(self, username: str) -> Request:
 url = self.url("/users/{username}/repos", username=username)
 return Request("GET", url)

Here we did the following:

	First, we defined Repo dataclass that describes what
we want to get from response

	Next, we used Fetch descriptor to declare API method

	Each Fetch object also needs a so-called request factory.
We provide one by using get_repos.request decorator
on the get_repos_request method

	get_repos_request is a pure function and easy to test

	No need to use overload - mypy will understand the return type
of the .get_repos call

There are several trade-offs using this approach:

	no auto-completion when calling a method, which is a really huge flaw.

	mypy won’t check the signature of the method due to limited support
of the callable argument

	for end user it will be hard to understand what’s going on and where to
look in case of any problem

API Reference

This page is reference for the public API.
Each class or function can be imported directly from apiwrappers.

	
apiwrappers.fetch(driver: apiwrappers.protocols.Driver, request: apiwrappers.entities.Request, timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue] = NoValue(), model: None [https://docs.python.org/3/library/constants.html#None] = None, source: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → apiwrappers.entities.Response

	
apiwrappers.fetch(driver: apiwrappers.protocols.AsyncDriver, request: apiwrappers.entities.Request, timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue] = NoValue(), model: None [https://docs.python.org/3/library/constants.html#None] = None, source: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Awaitable[apiwrappers.entities.Response]

	
apiwrappers.fetch(driver: apiwrappers.protocols.Driver, request: apiwrappers.entities.Request, timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue] = NoValue(), model: Union[Callable[[...], apiwrappers.shortcuts.T], Type[apiwrappers.shortcuts.T]] = None, source: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → apiwrappers.shortcuts.T

	
apiwrappers.fetch(driver: apiwrappers.protocols.AsyncDriver, request: apiwrappers.entities.Request, timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue] = NoValue(), model: Union[Callable[[...], apiwrappers.shortcuts.T], Type[apiwrappers.shortcuts.T]] = None, source: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Awaitable[apiwrappers.shortcuts.T]

	Makes a request and returns response from server.

This is shortcut function for making requests. Prefer this over
Driver.fetch() and
AsyncDriver.fetch().
It also has extended behaviour and can parse JSON if model arg provided.

	Parameters

	
	driver – driver that actually makes a request.

	request – request object.

	timeout – how many seconds to wait for the server to send data before giving up.
If set to None waits infinitely. If provided, will take precedence over
the driver.timeout.

	model – parser for a json response. This can be either type, e.g. List[int], or
a callable that accepts json.

	source – name of the key in the json, which value will be passed to the model.
You may use dotted notation to traverse keys, e.g. key1.key2.

	Returns

	
	Response if regular driver is provided and model is not.

	Awaitable[Response] if asynchronous driver is provided, model is not.

	T if regular driver and model is provided. The T corresponds to
model type.

	Awaitable[T] if asynchronous driver and model is provided. The T
corresponds to model type.

	Raises

	
	Timeout – the request timed out.

	ssl.SSLError [https://docs.python.org/3/library/ssl.html#ssl.SSLError] – An SSL error occurred.

	ConnectionFailed – a connection error occurred.

	DriverError – in case of any other error in driver underlying library.

Simple Usage:

>>> from apiwrappers import Method, Request, fetch, make_driver
>>> driver = make_driver("requests")
>>> request = Request(Method.GET, "https://example.org")
>>> response = fetch(driver, request)
<Response [200]>

To use it in asynchronous code just use proper driver and don’t forget to await:

>>> from apiwrappers import Method, Request, fetch, make_driver
>>> driver = make_driver("aiohttp")
>>> request = Request(Method.GET, "https://example.org")
>>> response = await fetch(driver, request)
<Response [200]>

If you provide model argument the JSON response will be parsed:

>>> from dataclasses import dataclass
>>> from typing import List
>>> from apiwrappers import Method, Request, fetch, make_driver
>>> @dataclass
... class Repo:
... name: str
>>> driver = make_driver("requests")
>>> Request(
... Method.GET,
... "https://api.github.com/users/unmade/repos",
...)
>>> fetch(driver, request, model=List[Repo])
[Repo(name='am-date-picker'), ...]

Do note, it’s highly discourage to use Optional if a fetch call, because
mypy can’t infer proper type for that case and the return type will be object

	
apiwrappers.make_driver(driver_type: typing_extensions.Literal[requests], *middleware: Type[apiwrappers.protocols.Middleware], timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]] = 'DEFAULT_TIMEOUT', verify: Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'True', cert: Union[str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]] = 'None') → apiwrappers.protocols.Driver

	
apiwrappers.make_driver(driver_type: typing_extensions.Literal[aiohttp], *middleware: Type[apiwrappers.protocols.AsyncMiddleware], timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]] = 'DEFAULT_TIMEOUT', verify: Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'True', cert: Union[str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]] = 'None') → apiwrappers.protocols.AsyncDriver

	
apiwrappers.make_driver(driver_type: str [https://docs.python.org/3/library/stdtypes.html#str], *middleware: Union[Type[apiwrappers.protocols.Middleware], Type[apiwrappers.protocols.AsyncMiddleware]], timeout: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]] = 'DEFAULT_TIMEOUT', verify: Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'True', cert: Union[str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]] = 'None') → Union[apiwrappers.protocols.Driver, apiwrappers.protocols.AsyncDriver]

	Creates driver instance and returns it

This is a factory function to ease driver instantiation. That way you can abstract
from specific driver class - no need to import it, no need to know how the class
is called.

	Parameters

	
	driver_type – specifies what kind of driver to create. Valid choices are
request and aiohttp.

	*middleware – middleware to apply to driver. Dependant on
driver_type it should be of one kind - either Type[Middleware]
for regular drivers and Type[AsyncMiddleware] for asynchronous ones.

	timeout – how many seconds to wait for the server to send data before giving up.
If set to None waits infinitely.

	verify – Either a boolean, in which case it controls whether to verify the
server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use.

	cert – Either a path to SSL client cert file (.pem) or a (‘cert’, ‘key’) tuple.

	Returns

	
	Driver if driver_type is requests.

	AsyncDriver if driver_type is aiohttp.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if unknown driver type specified

Usage:

>>> from apiwrappers import make_driver
>>> make_driver("requests")
RequestsDriver(timeout=300, verify=True)

Driver Protocols

	
class apiwrappers.AsyncDriver(*args, **kwds)

	Protocol describing asynchronous driver.

	
middleware

	list of middleware to be run on every request.

	Type

	MiddlewareChain

	
timeout

	how many seconds to wait for the server to send data before giving up.
If set to None should wait infinitely.

	Type

	Timeout

	
verify

	Either a boolean, in which case it controls whether to verify the
server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use.

	Type

	Verify

	
cert

	Either a path to SSL client cert file (.pem) or a (‘cert’, ‘key’) tuple.

	Type

	ClientCert

	
async fetch(request, timeout=NoValue())

	Makes actual request and returns response from the server.

	Parameters

	
	request (apiwrappers.entities.Request) – a request object with data to send to server.

	timeout (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue]) – how many seconds to wait for the server to send data before
giving up. If set to None waits infinitely. If provided, will take
precedence over the AsyncDriver.timeout.

	Return type

	apiwrappers.entities.Response

Returns: response from the server.

	Raises

	
	Timeout – the request timed out.

	ssl.SSLError [https://docs.python.org/3/library/ssl.html#ssl.SSLError] – An SSL error occurred.

	ConnectionFailed – a connection error occurred.

	DriverError – in case of any other error in driver underlying library.

	Parameters

	
	request (apiwrappers.entities.Request) –

	timeout (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue]) –

	Return type

	apiwrappers.entities.Response

	
class apiwrappers.Driver(*args, **kwds)

	Protocol describing regular synchronous driver.

	
middleware

	list of middleware to be run on every request.

	Type

	MiddlewareChain

	
timeout

	how many seconds to wait for the server to send data before giving up.
If set to None should wait infinitely.

	Type

	Timeout

	
verify

	Either a boolean, in which case it controls whether to verify the
server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use.

	Type

	Verify

	
cert

	Either a path to SSL client cert file (.pem) or a (‘cert’, ‘key’) tuple.

	Type

	ClientCert

	
fetch(request, timeout=NoValue())

	Makes actual request and returns response from the server.

	Parameters

	
	request (apiwrappers.entities.Request) – a request object with data to send to server.

	timeout (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue]) – how many seconds to wait for the server to send data before
giving up. If set to None waits infinitely. If provided, will take
precedence over the Driver.timeout.

	Return type

	apiwrappers.entities.Response

Returns: response from the server.

	Raises

	
	Timeout – The request timed out.

	ssl.SSLError [https://docs.python.org/3/library/ssl.html#ssl.SSLError] – An SSL error occurred.

	ConnectionFailed – A Connection error occurred.

	DriverError – In case of any other error in driver underlying library.

	Parameters

	
	request (apiwrappers.entities.Request) –

	timeout (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None], datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], apiwrappers.structures.NoValue]) –

	Return type

	apiwrappers.entities.Response

Request and Response

	
class apiwrappers.Method(value)

	A subclass of enum.Enum that defines a set of HTTP methods

	The available methods are:
	
	DELETE

	HEAD

	GET

	POST

	PUT

	PATCH

Usage:

>>> from apiwrappers import Method
>>> Method.GET
<Method.GET: 'GET'>
>>> Method.POST == 'POST'
True

	
class apiwrappers.Request(method, url, query_params=None, headers=None, cookies=None, auth=None, data=None, files=None, json=None)

	A container holding a request information

	Parameters

	
	method (apiwrappers.entities.Method) – HTTP Method to use.

	url (apiwrappers.structures.Url) – URL to send request to.

	query_params (Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – dictionary or list of tuples to send in the query string. Param
with None values will not be added to the query string. Default value is
empty dict.

	headers (MutableMapping[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – headers to send.

	cookies (MutableMapping[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – cookies to send.

	auth (Optional[Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], Callable[[], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]], Callable[[], Generator[Request, Response, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]]]]) – Auth tuple to enable Basic Auth or callable returning dict with
authorization headers, e.g. ‘{“Authorization”: “Bearer …”}’

	data (Union[str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], Iterable[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]]) – the body to attach to the request. If a dictionary or list of tuples
[(key, value)] is provided, form-encoding will take place.

	files (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[BinaryIO, Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], BinaryIO], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], BinaryIO, str [https://docs.python.org/3/library/stdtypes.html#str]]]]]) – Dictionary of 'name': file-like-objects (or {'name': file-tuple})
for multipart encoding upload.
file-tuple can be a 2-tuple ('filename', fileobj),
3-tuple ('filename', fileobj, 'content_type'), where 'content-type'
is a string defining the content type of the given file.

	json (Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], None [https://docs.python.org/3/library/constants.html#None], Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], List[Any]]) – json for the body to attach to the request (mutually exclusive with
data arg).

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If both data or files or json args provided.

Usage:

>>> from apiwrappers import Request
>>> Request(Method.GET, 'https://example.org')
Request(method=<Method.GET: 'GET'>, ...)

	
class apiwrappers.Response(request, status_code, url, headers, cookies, content, encoding)

	A container holding a response from server.

	Parameters

	
	request (apiwrappers.entities.Request) – request object to which this is a response.

	status_code (int [https://docs.python.org/3/library/functions.html#int]) – integer Code of responded HTTP Status, e.g. 404 or 200.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – final URL location of Response

	headers (apiwrappers.structures.CaseInsensitiveDict[str [https://docs.python.org/3/library/stdtypes.html#str]]) – case-insensitive dict of response headers. For example,
headers['content-encoding'] will return the value of a
'Content-Encoding' response header.

	cookies (http.cookies.SimpleCookie [https://docs.python.org/3/library/http.cookies.html#http.cookies.SimpleCookie]) – cookies the server sent back.

	content (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – content of the response, in bytes.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – encoding or the response.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
json()

	Returns the json-encoded content of the response.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the response body does not contain valid json.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], None [https://docs.python.org/3/library/constants.html#None], Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], List[Any]]

	
text()

	Returns content of the response, in unicode.

If server response doesn’t specified encoding, utf-8 will be used instead.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class apiwrappers.Url(template, **replacements)

	Class to work with formatted string URLs and joining urls and path.

Sometimes it useful to keep original format string in place, for example,
for logging or metrics. This class stores original format string and its
replacements fields, substituting it when needed.

	Parameters

	
	template (str [https://docs.python.org/3/library/stdtypes.html#str]) – a URL as format string, e.g. “https://example.org/users/{id}”.

	replacements (Any) – values to format template with.

Usage:

>>> from apiwrappers import Url
>>> url = Url("https://example.org")
>>> url("/users/{id}", id=1)
Url('https://example.org/users/{id}', id=1)
>>> str(url("/users/{id}", id=1))
'https://example.org/users/1'

	
__call__(path, **replacements)

	Joins path with current URL and return a new instance.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – a path as format string, e.g. “/users/{id}”.

	replacements (Any) – values to path with.

	Return type

	apiwrappers.structures.Url

Returns: New instance with a url joined with path.

Exceptions

	
exception apiwrappers.DriverError

	Base class for driver-specific errors.

	
exception apiwrappers.ConnectionFailed

	A Connection error occurred.

	
exception apiwrappers.Timeout

	The request timed out.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 apiwrappers	

Index

 _
 | A
 | C
 | D
 | F
 | J
 | M
 | R
 | T
 | U
 | V

_

 	
 	__call__() (apiwrappers.Url method)

A

 	
 	
 apiwrappers

 	module

 	
 	AsyncDriver (class in apiwrappers)

C

 	
 	cert (apiwrappers.AsyncDriver attribute)

 	(apiwrappers.Driver attribute)

 	
 	ConnectionFailed

D

 	
 	Driver (class in apiwrappers)

 	
 	DriverError

F

 	
 	fetch() (apiwrappers.AsyncDriver method)

 	(apiwrappers.Driver method)

 	(in module apiwrappers)

J

 	
 	json() (apiwrappers.Response method)

M

 	
 	make_driver() (in module apiwrappers)

 	Method (class in apiwrappers)

 	middleware (apiwrappers.AsyncDriver attribute)

 	(apiwrappers.Driver attribute)

 	
 	
 module

 	apiwrappers

R

 	
 	Request (class in apiwrappers)

 	
 	Response (class in apiwrappers)

T

 	
 	text() (apiwrappers.Response method)

 	Timeout

 	
 	timeout (apiwrappers.AsyncDriver attribute)

 	(apiwrappers.Driver attribute)

U

 	
 	Url (class in apiwrappers)

V

 	
 	verify (apiwrappers.AsyncDriver attribute)

 	(apiwrappers.Driver attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to apiwrappers

 		
 Building an API Client

 		
 Making a Request

 		
 Writing a Simple API Client

 		
 Adding Type Annotations

 		
 Using the API Client

 		
 Drivers

 		
 Basic Usage

 		
 Driver protocols

 		
 Timeouts

 		
 SSL Verification

 		
 Writing your own driver

 		
 Authentication

 		
 Basic Authentication

 		
 Token Authentication

 		
 Api key Authentication

 		
 Custom Authentication

 		
 Authentication Flows

 		
 Middleware

 		
 Writing your own middleware

 		
 Using middleware

 		
 Middleware order

 		
 Experimental Features

 		
 API Reference

 		
 Driver Protocols

 		
 Request and Response

 		
 Exceptions

_static/file.png

_static/minus.png

_static/plus.png

